Skip to content

Vectorize Molecules

The Vectorize Molecules module in ChemXploreML provides tools for converting molecular structures into numerical representations (embeddings) that can be used for machine learning and analysis.

Overview

Vectorize Molecules Interface

The Vectorize Molecules interface offers:

  1. Multiple Embedding Methods

    • Molecular fingerprints
    • Graph-based embeddings
    • Learned representations
    • Custom descriptors
  2. Configuration Options

    • Embedding type selection
    • Parameter tuning
    • Feature selection
    • Output format options

Process Flow

Vectorization Process

The vectorization process includes:

  1. Input Processing

    • Molecular structure validation
    • Feature extraction
    • Data standardization
    • Batch processing
  2. Embedding Generation

    • Fingerprint calculation
    • Graph representation
    • Feature vector creation
    • Quality checks

Key Features

Embedding Methods

  • Molecular Fingerprints

    • ECFP (Extended Connectivity Fingerprints)
    • MACCS keys
    • Atom pair fingerprints
    • Topological fingerprints
  • Graph-based Embeddings

    • Graph neural networks
    • Message passing networks
    • Graph convolutional networks
    • Custom graph representations
  • Learned Representations

    • Pre-trained models
    • Transfer learning
    • Fine-tuning options
    • Custom training

Configuration Options

  • Embedding dimension selection
  • Feature importance analysis
  • Parameter optimization
  • Output format selection

Best Practices

  1. Method Selection

    • Consider data characteristics
    • Account for downstream tasks
    • Balance accuracy and speed
    • Validate results
  2. Parameter Tuning

    • Optimize embedding dimensions
    • Adjust algorithm parameters
    • Validate performance
    • Document settings
  3. Quality Control

    • Validate embeddings
    • Check for information loss
    • Monitor performance
    • Track changes

Next Steps

After generating molecular embeddings, you can:

  1. Apply Dimensionality Reduction for visualization
  2. Use the embeddings for ML Training
  3. Perform Molecular Analysis

For more detailed information about specific embedding methods or configuration options, please refer to the respective documentation sections.