Skip to content

Dimensionality Reduction

The Dimensionality Reduction module in ChemXploreML provides powerful tools for reducing the complexity of molecular data while preserving important structural and property information.

Overview

Dimensionality Reduction Overview

The Dimensionality Reduction interface offers:

  1. Multiple Algorithms

    • Principal Component Analysis (PCA)
    • t-SNE
    • UMAP
    • Other advanced techniques
  2. Visualization Tools

    • 2D/3D scatter plots
    • Interactive visualizations
    • Cluster highlighting
    • Property mapping

PCA Implementation

PCA Visualization

Principal Component Analysis (PCA) is one of the most commonly used dimensionality reduction techniques in ChemXploreML:

Features

  • Automatic component selection
  • Variance explained analysis
  • Component contribution analysis
  • Interactive visualization

Usage

  1. Select PCA from the algorithm options
  2. Configure parameters:
    • Number of components
    • Scaling options
    • Feature selection
  3. Run the analysis
  4. Explore results

Key Features

Algorithm Selection

  • Choose from multiple algorithms
  • Compare different methods
  • Optimize parameters
  • Save configurations

Visualization

  • Interactive 2D/3D plots
  • Property mapping
  • Cluster highlighting
  • Export options

Analysis Tools

  • Variance analysis
  • Component contribution
  • Cluster analysis
  • Outlier detection

Best Practices

  1. Data Preparation

    • Standardize features
    • Handle missing values
    • Remove outliers
    • Select relevant features
  2. Algorithm Selection

    • Consider data size
    • Account for computational resources
    • Match algorithm to goals
    • Validate results
  3. Parameter Tuning

    • Optimize number of components
    • Adjust algorithm parameters
    • Validate results
    • Document settings

Next Steps

After performing dimensionality reduction, you can:

  1. Use the reduced data for ML Training
  2. Generate Molecular Embeddings
  3. Perform Molecular Analysis

For more detailed information about specific algorithms or visualization options, please refer to the respective documentation sections.